Oxidative Stress Induces Caveolin 1 Degradation and Impairs Caveolae Functions in Skeletal Muscle Cells
نویسندگان
چکیده
Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2) at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle.
منابع مشابه
A caveolin-3 mutant that causes limb girdle muscular dystrophy type 1C disrupts Src localization and activity and induces apoptosis in skeletal myotubes.
Caveolins are membrane proteins that are the major coat proteins of caveolae, specialized lipid rafts in the plasma membrane that serve as scaffolding sites for many signaling complexes. Among the many signaling molecules associated with caveolins are the Src tyrosine kinases, whose activation regulates numerous cellular functions including the balance between cell survival and cell death. Seve...
متن کاملCaveolae at a glance.
The plasma membrane is more than a simple delimitation of the boundary of the cell but is a dynamic multi-domain membrane system participating in numerous cellular processes. In many different cell types, the plasma membrane is heavily decorated with small pits of 60–80 nm in diameter, which constitute a specialized type of microdomain called caveolae. Nowadays, almost 60 years after the first ...
متن کاملExpression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts Stress-induced premature senescence upregulates the expression of endogenous caveolin-1
Caveolae are vesicular invaginations of the plasma membrane. Caveolin-1 is the principal structural component of caveolae in vivo. Several lines of evidence are consistent with the idea that caveolin-1 functions as "transformation suppressor" protein. In fact, caveolin-1 mRNA and protein expression are lost or reduced during cell transformation by activated oncogenes. Interestingly, the human c...
متن کاملExpression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts.
Caveolae are vesicular invaginations of the plasma membrane. Caveolin-1 is the principal structural component of caveolae in vivo. Several lines of evidence are consistent with the idea that caveolin-1 functions as a "transformation suppressor" protein. In fact, caveolin-1 mRNA and protein expression are lost or reduced during cell transformation by activated oncogenes. Interestingly, the human...
متن کاملCaveolin-3 Associates with Developing T-tubules during Muscle Differentiation
Caveolae, flask-shaped invaginations of the plasma membrane, are particularly abundant in muscle cells. We have recently cloned a muscle-specific caveolin, termed caveolin-3, which is expressed in differentiated muscle cells. Specific antibodies to caveolin-3 were generated and used to characterize the distribution of caveolin-3 in adult and differentiating muscle. In fully differentiated skele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015